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THEORBITALRECOVERYPROBLEM 

PART I - AN ANALYSIS TECHNIQUE FOR RAPID DETERMINATION OF 

RETURN OPPORTUNITIES AND LATERAL-RANGE REQUIREMENTS 

FOR RECALL TO RECOVERY NETWORKS 

By Paul F. Holloway and E. Brian Pritchard 
Langley Research Center 

SUMMARY 

An analysis technique has been developed which makes possible a rapid, accurate 
solution of the orbital return problem in terms of the determination of recall opportuni- 
ties and the lateral-range requirements associated with these opportunities for the 
recovery of spacecraft. The methods of application of the analysis technique through 
an analytical -computer solution, a computer -graphical solution, and a slide -rule solu- 
tion are discussed. 

The technique of analysis may be applied to the problem of return from any orbit 
inclination to any point or number of points on earth. In addition, the technique allows 
consideration of return from circular or elliptical orbits with any period. 

Although the analytical-computer solution may be costly in terms of machine time, 
the computer-graphical solution is shown to be a practical method of obtaining rapid, 
economical results for a large number of constraints without adding any appreciable 
inaccuracy to the solution. Examples of the application of the computer-graphical solu- 
tion are presented for return from circular orbits having periods of 1.5 and 10 hours and 
from an elliptical orbit with a period of 2 hours and apogee and perigee distances of 5165 
and 3600 nautical miles, respectively. The computer -graphical technique of solution 
developed in part I of this report is used to select recovery sites for the wide spectrum 
of constraints presented separately in part II. 

INTRODUCTION 

Efforts to define requirements for future entry vehicles have been aided by several 
studies (see, for example, refs. I to 8) which are applicable to the problem of return 
from orbit. A synopsis of these studies (with the exception of ref. 8) is given in the 
introduction of reference 9. 



The accessibility of a spacecraft to a given point on earth from a given orbit incli- 
nation and altitude in terms of lateral-range requirements has customarily been deter- 
mined by lengthy graphical techniques or by an expression of the probability of recall. 
One such graphical technique involves the plotting of each orbital ground track of the 
vehicle during the day. With a known lateral-range capability, the daily recall opportu- 
nities can then be determined for any point or points on earth. Another more simplified 
technique (ref. 8) involves shifting a single orbital ground track along a map of the world 
to represent the rotation of the earth. Both techniques require the use of a planar pro- 
jection of the earth. Extreme care must be taken, therefore, to retain any degree of 
accuracy because of the distortion in scales generally peculiar to these types of projec- 
tions. These distortions usually increase with distance from the equator (latitude) and 
the resulting complexity of applying these techniques increases with increasing orbital 
inclination. Hence, although the techniques are very simple in principle, their application 
can be relatively difficult and/or inaccurate. 

In reference 9, a single equation has been derived which allows the calculation of 
the shortest perpendicular great circular arc on the earth’s surface (lateral-range 
requirement) from a given point on earth to the orbital plane of a spacecraft at any time. 
Single or multiple recovery sites may be considered with equal simplicity. However, 
because of the broad scope and the desire to maintain a generality of results, the orbital 
return problem was reduced in reference 9 to the two quantities of fundamental impor- 
tance - lateral-range requirements and recovery-site location. It is the purpose of the 
present report to treat the more realistic case of orbital return with consideration of the 
location of the spacecraft in its orbital plane and the interaction between the motion of 
the spacecraft along its orbital plane and the rotation of the earth beneath the orbital 
plane. 

In particular, it is the purpose of this paper to define a computer technique for the 
determination of recall opportunities and the lateral-range requirements associated with 
these opportunities. The emphasis is placed on a graphical simplification to this com- 
puter technique which makes possible the rapid, economical solution of the orbital return 
problem for any set of constraints without loss of accuracy. Several examples of the 
application of this technique are presented. In addition, a slide -rule-solution technique 
which can be applied for specific missions is presented. 

The computer-graphical technique developed herein is used to select recovery sites 
for the wide spectrum of constraints presented in part II (ref. 10). 



SYMBOLS 

a 

b 

B 

D 

e 

I 

L 

n 

P 

r 

t 

V 

VC earth satellite velocity at r = r. 

semimajor axis 

semiminor axis 

location of a general recovery site on earth’s surface 

drag 

eccentricity 

specific impulse 

lift 

orbit 

semi-latus rectum, b2/a 

radial distance from center of earth 

time 

velocity 

AV deorbit velocity decrement 

v= v/v, 

a! 

Y 

x 

X’ 

inclination of orbital plane to earth equatorial plane 

flight-path angle 

latitude 

lateral-range angle (latitude of recovery site or point on earth referred to 
orbital plane), measured in degrees of earth surface arc (lo = 60 n. mi.) 

earth gravitational constant 

longitude 
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6E angular rotation rate of earth 

0’ longitude of orbital plane referred to the inte I! section of the earth equatorial 
and orbital planes 

i’s 

u 

7 

angular rotation rate of spacecraft in its orbit 

retropropulsionGystem structural mass fraction 

period 

Subscripts: 

a 

A,B 

d 

e 

P 

r 

S 

t 

0 

1,293,. 

max 

req 

. s 

apogee 

some point on earth 

descent trajectory 

elliptical orbit 

per igee 

return opportunity 

spacecraft 

time of initial return opportunity 

surface of earth 

orbit number 

maximum 

required 

ANALYSIS TECHNIQUE 

General Concepts 

The lateral range required for a spacecraft to return to a particular point on earth 
is generally measured perpendicular to the orbital plane. The approach taken in the 
technique of analysis developed herein for the determination of recall opportunities and 
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the associated lateral-range requirements is to refer the latitude and longitude of a gen- 
eral point on the surface of the earth to the orbital plane rather than to the earth equa- 
torial plane. The motion of the spacecraft is, of course, easily referred to its plane. 
This approach simplifies the solution of the’orbital recovery problem and greatly reduces 
the effort necessary to obtain accurate results, as is demonstrated in part II (ref. 10). 
Thus, in order to determine the expressions from which return opportunities and re,quire- 
ments may be calculated, it is first necessary to obtain an expression for the longitudinal 
location of a general point on the earth’s surface with respect to the orbital plane as a 
function of time. Next, the longitudinal movement of the spacecraft in its orbit must be 
determined. The points in time for which a simultaneous solution of the two expressions 
exist may be defined as the opportunities for return of the spacecraft to the recovery site. 
This definition of return opportunity is actually fictitious since these solutions physically 
represent the time at which the spacecraft crosses the point at which a great circular 
arc (drawn through the point on earth perpendicular to the orbital plane) intersects the 
orbital plane. The actual deboost time t.AV must occur at a time prior to this solution 
point as given by 

tAV = tsol - td 

where t,,l is the time of solution and td is the time increment from application of 
deboost velocity decrement to touchdown of spacecraft. For circular orbits, td will be 
a constant for a given orbital altitude, velocity decrement, entry trajectory, et cetera. 
For elliptical orbits, td will vary, and the exact time increment will depend also upon 
the location of the deboost point on the orbital path. It must be stressed that the impor- 
tant parameter is the time of solution since this parameter defines the time increments 
between return opportunities. Therefore, for simplicity, in the following discussion the 
times of solution will be referred to as the return opportunities, with the realization that 
the actual deboost time will be determined by td. 

To illustrate the importance of determining these solution points accurately, con- 
sider a vehicle in a circular orbit with an altitude of 150 nautical miles. This vehicle 
will move in its orbit through one revolution in 1.5 hours. During the orbital revolution 
of the spacecraft, however, the earth is rotating at a rate of 15 degrees per hour. Also 
consider the spacecraft to be in a west-east orbit so that the spacecraft movement is in 
the same direction as the rotation of the earth. Since the period of the spacecraft is 
1.5 hours, it will complete 16 orbits per day. However, for an equatorial orbit, the 
period of the spacecraft referred to some longitude (point on earth) will be 1.6 hours, 
and 15 return opportunities will occur per day. That is, 

TB = 1.5 + s = 1.6 
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where 

1.5 hour is the period of spacecraft for one revolution of 360° in its orbit 

22.5’ is the rotation of the point on the earth at some longitude 8 during 1.5-hour period 

225 deg/hr is the rotation rate of spacecraft relative to some point on the surface of the 
earth 

For an equatorial orbit, then, the requirements to reach some point on the surface of the 
earth may be determined by assuming an initial time t for deboost during the first 
orbit and by determining the lateral-range requirement for times given by 

tr = tr-1 + TB 

where TB = 1.6 for a 150-nautical-mile orbit. However, for an orbit with any inclina- 
tion other than zero, 7B will be variable and cannot be determined easily by analytical 
methods. The period rB must be determined iteratively, numerically, or graphically 
as will be demonstrated. Resulting calculations show that for a -30’ orbit inclination and 
for return to a latitude of 25.5O (e.g., a site at Homestead AFB, Florida), 7B will vary 
from a minimum of 1.52 hours to a maximum of 1.67 hours during a l-day period. (If 
a constant value of TB is used, one may predict erroneously that a given vehicle can 
return to a particular point during some orbit.) The average value of 7B will again 
be 1.6 hours and 15 return opportunities will occur daily. 

Consider now a circular orbit with the same altitude (150 n. mi.), an inclination of 
-60°, and a return site at a latitude of 35’ (e.g., Edwards AFB, California). For this 
case, the average value of rB will be 1.5 hours and 16 return opportunities will occur 
daily. 

The number of return opportunities during a 24-hour cycle may be determined 
analytically for a spacecraft in a west-east orbit with 7s = 1.5 as follows: 

If IaJ + 1 hl c 90°, 15 return opportunities will occur 

If Ial + ) A( 2 90°, 16 return opportunities will occur 

Latitude and Longitude of Point on Earth Referred to Orbital Plane 

The accessibility of the spacecraft to a given ground recovery point is defined by 
referring the latitude and longitude of some point on earth to the orbital plane rather than 
to the earth equatorial plane. The equation representing the latitudinal angle between a 
point on the surface of the earth and the orbital plane, as developed in reference 9, is 

X’ = sin-1 [sin x cos Q! + cos h sin a sin(igt + aj (1) 



In the application of equation (l), the following sign conventions are utilized: 

(a) Northern latitudes are considered positive and southern latitudes are considered 
negative. 

(b) West longitudes are considered positive and east longitudes are considered neg- 
ative (measured from the Greenwich meridian). Therefore, the rotation rate of the earth 
is negative. (Note that sign convention (b) is not the same as the one used in ref. 9.) 

(c) With the intersection of the orbital plane and the earth equatorial plane occurring 
at Oo longitude, orbits passing over the southern hemisphere at west longitudes are con- 
sidered to have positive inclinations; likewise, orbits passing over the northern hemi- 
sphere at west longitudes are considered to have negative inclinations. 

In defining the longitude of a point on earth referred to the orbital plane, consider 
figure 1. From the spherical triangle shown in figure l(b), the following relation must 
hold: 

tan 8’B = cos(p + a) 
cot @ c-3) 

Polar axis of rotation 

(a) Sketch of geometrical model. 

B 

OAC is equatorial plane 
OAT is orbital plane 

(b) Sketch of spherical triangle on earth’s surface. 

Figure I.- Problem geometry. 

But 

cos(p + or) = cos p cos Q - sin p sin f2 (3) 

and 

cos p = sin 8 Cos X (4) 
1 - cos% co&I 

sin p = sin X 

Ir 
(5) 

1 - co&I co& 

Also 

cos 4 = cos x cos 8 

or 

cot @ = cos x cos e 

1 - ~0s~~ c0s2e 
(6) 

7 



Substituting equations (3) to (6) into equation (2) yields 

tan erB = sin e c0s (Y- sin atan X 
cos e 

(7) 

In order to include the lateral-range variation with time due to the rotation of, the earth, 
the longitude term must include the time dependence, that is, longitude must be repre- 
sented by (e’Et + e), and equation (7) becomes 

. 
e,B = tanyl eEy + e);o.!s (Y - sin Q! tan h 

cos(egt + 8) 1 (8) 

Equation (8) may be used to indicate the longitudinal motion of a given point on earth 
(x,8) referred to an orbital-plane inclination CY with time. Equation (8) is necessary but 
not sufficient for the determination of the time variation of B’B since the digital com- 
puter would not be able to define the quadrant of the orbital plane in which BIB is meas- 
ured. (Equation (8) is sufficient, however, for the application of the technique through 
slide-rule solution which is discussed subsequently in this report.) 

The longitude 8’B may be completely defined by deriving an alternate expression 
for sin B’B. By comparison of the signs of sin B’B and tan &B, the quadrant of the 
angle is then defined. 

From figure 1, it can be seen that 

sin 81B = tan A’ cot@ + 0) 

but 

cot@ + CY) = 1 - tan p tan cr 
tan p + tan LY 

and 

tan P = *, 

Therefore, substituting equations (10) and (11) into equation (9) yields 

= sin 
+ 0) - tan x tan a! 

sin(iEt + $tan (Y 
3 

(9) 

(10) 

(11) 

(12) 

where A’ is given by equation (1). 
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SOLUTION TECHNIQUES 

Analytical-Computer Solution 

The lateral-range requirements necessary for a spacecraft to return from a cir- 
cular orbit to a multiple-site recovery network may be calculated on a computer with the 
following numerical-solution technique: First, the return opportunities (i.e., time) must 
be determined for return to the nominal prime site within the recovery network. (See 
numerical example in preceding section.) This nominal prime site is defined as that 
site to which scheduled returns would be made under ordinary conditions. Next, oppor - 
tunities for return to the remaining sites of the network can be determined with reference 
to those opportunities for return to the nominal prime site. 

Return to prime site.- The exact determination of return opportunities requires a 
simultaneous solution of equations (8) and (12) for PB and the equations representing 
O’s. (See appendix A.) A practical numerical approach would be as follows: Consider 
the vehicle to be in its orbit at a time tI at which the first opportunity to deboost to 
return to the nominal prime site occurs. The time for deboost to the nominal prime site 
on the second opportunity would then be given by 

t2 = t1 + Ts + 
e'tl - e'tl+Ts + e't1+7s + Q1+Ts+t + 

4'S es 
. . . (13) 

The general equation for time of opportunity for return to the nominal prime site may be 
expanded as 

tr+l = tr + 7s + “tr - “tr+Ts 
B’, 

+ e’tr+7s - “tr+Ts+t’ + “tr+Ts+t’ - e’tr+Ts+t’+t” 
6, 8’, 

+. . . 

(14) 

where 

t’ = “tr - “t.r+Ts ; t” = “tr+Ts - “tr+Ts+t’ . 
8’, Q’, 

, . . . 

and the 6’R p arameters are determined from equations (8) and (12). Note that if 
tr+l > 24 hours, the correct time may be obtained by subtracting 24 hours from the cal- 
culated value. The times of return opportunities are then calculated until tr = tl which 
will signal the last calculation. The desired accuracy can be determined by ending the 
calculation of tr+l when t”‘* is some reasonably small number (such as, 
tr... 5 0.01 hour). 
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The computer then stores the values of tr for the nominal prime site and calcu- 
lates the lateral range required to reach the nominal prime site by solving equation (1) 
by using the input latitude, longitude, orbit inclination, and times t,. 

Return to secondary sites of recovery network.- The use of the term “secondary 
sites” refers to all the sites within a recovery network excluding the nominal prime site. 
The times of opportunities for return to a secondary site are given by 

( ) 
trB= hA+ 

( ) (“‘+)A - (e’tr)B (e’tr)B - (“tr+tgB (e’tr+t’)B - (e’tr+t’+t’~B 
+ + B’S +. . . 

(15) 

where 

until t ‘.*. equals some arbitrarily chosen constant. 

Equation (15) must be solved for each secondary site of the recovery network sepa- 
rately. Once the times of opportunities for return to a secondary site have been deter- 
mined, the lateral-range requirements for each return opportunity may be calculated 
from equation (l), as was done for the nominal prime site. 

The preceding solution technique represents essentially a simultaneous solution of 
a sixteenth-order equation (for 7s = 1.5 hours or a low circular orbit). The computer 
time required for determination of return opportunities and lateral-range requirements 
for a large number of sites and/or orbit inclinations makes a precise numerical solution 
undesirable from a cost standpoint. Alternate approaches to the programing by iterative 
techniques in the solution of equations (8) and (12) and the equation representing the move- 
ment of the spacecraft along its orbit would also require lengthy run times for final solu- 
tion. Such a solution would involve matching values of B’R and 61rs through an itera- 
tion technique. For example, initially, a time to would be used to solve for 8’R and 

et,. If the solutions did not match, a new time to f dt would be used until the solutions 
were found to converge at a time tr. The subsequent return opportunities would be 
found by first calculating solutions for tr+l = t, + 7s and then finding the simultaneous 
solution point by the iteration technique using tr+l = tr + 7s + dt. 

A practical means of reducing costs (or keeping computer run time to a minimum) 
is to combine the analytical computation with a graphical solution of return opportunities 
as described in the following section. 
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Computer-Graphical Solution 

The computer-graphical technique greatly reduces machine time by determining 
the solution points (return opportunities) graphically. The input data required by the 
machine are simply the latitude and longitude of the sites within the recovery network, 
the orbital inclination, and the rotation rate of the earth. The computer is utilized only 
to determine the motion of the recovery site referred to the orbital plane. The motion 
of the spacecraft in its plane is determined independently. (See appendix A.) 

The method of solution is as follows: The computer is programed to solve equa- 
tions (l), (8), and (12) for the motion of the recovery site referred to the orbital plane. 
Comparison of the signs of the angles B’B determined by equation (8) with those deter- 
mined by equation (12) defines the quadrant of 0’ B The computer output is then simply 
the variation of XrB and 8’B with time for each site within the recovery network. 
The variations of X’B and 8’B are then plotted as a function of time with X’B and 

B’B as the ordinates and time as the abscissa. A typical example of computer results 
is shown in figure 2. These plots may also be produced by machine with increasing 
accuracy as the time intervals between calculations are reduced. The movement of the 
spacecraft in its plane is plotted on a transparent overlay. Note that the use of an over- 
lay allows the use of a single representation of the movement of the spacecraft in its 
plane with as many recovery sites as desired. The solution points (return opportunities) 
are then determined by placing the overlay over the plot of XtB and 8’B against t 
for a given site (computer-graphical solution of fig. 2). Each intersection of erB and 

8’s represents a return opportunity. For instance, in figure 2, the Or, curve of the 
fifth orbit intersects the B’B curve of the site at Or5 and time t5. The required 
lateral range at this opportunity is determined by reading vertically from the time of the 
intersection to the hrB curve and results in a value of hr5. The overlay may be shifted 
laterally (as shown in fig. 2) to determine the best time for injection of the spacecraft into 
orbit at a given location for maximum return capability. For return from elliptical orbits, 

n=l2345678 

Computer results overlay Example of overlay used with 
computer plots. 

Figure 2.- Computer-graphical solution. 
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the overlay must be shifted vertically to aline the perigee point of the orbit properly with 
respect to the intersection of the orbital and earth equatorial planes. This alinement is 
necessary since the variation of Brs with t is not linear for elliptical orbits. (See 
appendix A.) Thus, while the 8’, variation in the overlay need extend only over 360° 
for circular-orbit considerations, the 8’, variation in the overlay must extend over 
540’ for elliptical-orbit considerations. Examples of the application of this technique are 
presented in the section entitled “Examples of Application of Computer-Graphical 
Technique.” 

Slide-Rule Solution 

If it is desired to determine the recall opportunities and lateral-range requirements 
for a particular mission with return to a few sites so that the number of calculations does 
not merit the computer solution of XrB and B’B as functions of time, the solution may 
be acquired through desk-calculator or slide-rule computation. In this case, the solution 
may be obtained as outlined in the section entitled “Computer-Graphical Solution.” This 
technique may be further simplified to require only a solution of equations (1) and (8). In 
order to eliminate the necessity of solving equation (12), it is necessary to determine the 
quadrant of &B at time zero and the direction in which &B will vary with the rotation 
of the earth by analyzing a globe or map of the earth. Once this variation has been deter- 
mined, the proper quadrant of B’B can be determined for all times in the 0 to 24 hour 
period. For example, if the value of WB calculated for t = 0 is 45’, if 8’B lies in 
the first quadrant, and if the orbit is west-east in direction so that 8’B decreases with 
increasing time, then when tan erB changes to a negative number, 8’B passes into 
the fourth quadrant. 

As a check on the values of efB thus calculated, if I@/ f IX/ c 90°, 8’B will 
experience a 360° variation. Conversely, if (CY~ + 1x1 > 90°, 8’B will always experi- 
ence a variation of less than 180’ and be in either the first and second quadrants or in 
the third and fourth quadrants. 

EXAMPLES OF APPLICATION OF COMPUTER-GRAPHICAL TECHNIQUE 

To illustrate the application of the computer-graphical technique of solution, a 
three-base recovery network of Homestead AFB, Florida, Edwards AFB, California, and 
Hickam AFB, Hawaii, will be considered for return from orbits with inclinations of -30°, 
-60°, and -90’. The locations of these sites are given in the following table: 

I Recovery site Latitude, x, deg Longitude, 8, deg 

Homestead AFB, Fla. 25.50 80.40 
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In the development of this technique, the computer solution has been restricted simply to 
defining the movement of these sites (variation of xfB and 8’B with t) rekttiVe to the 
orbital plane. Therefore, the computer part of the solution is independent of the orbital 
altitude (period) and type of orbit (circular or elliptical). The solution of the nine cases 
considere’d requires only 38 seconds of machine time. Table I lists the computer results 
for calculation intervals of 1.5 hours. 

h 
hours 

0 

2 

i-8 
7:5 

1E 
12:o 
13.5 
15.0 
16.5 
18.0 
19.5 
21.0 
22.5 
24.0 

0 
1.5 

i:‘i 

8:: 

1”o.i 
12:o 
13.5 
15.0 
16.5 
16.0 
19.5 
21.0 
22.5 
24.0 

0 
1.5 

5:: 

2 

1:: 
12:o 
13.5 
15.0 
16.5 
18.0 
19.5 
21.0 
22.5 
24.0 

TABLE I. - COMPUTER RESULTS FOR CALCULATION INTERVALS OF 1.5 HOURS 

Homestead AFB, Fla. Edwards AFB, Calif. Hickam AFB, Hawaii 

X’B’ deg B’B, deg X’B’ deg 6”B, deg 

-4.14 
-.54 
6.40 

15.79 
26.62 
3'7.78 
41.79 -38.9 
54.36 -69.8 
54.87 -105.2 
49.04 -137.0 
39.37 -162.1 
28.21 117.3 
17.31 

7.64 
.28 

-3.85 
-4.14 

-33.74 
-26.55 
-13.74 

2.34 
20.22 
39.10 
50.47 
77.14 
80.39 
61.33 
41.92 
22.94 

4.81 
-11.54 
-24.95 
-33.14 
-33.74 

-62.81 
-49.87 
-31.52 
-11.62 

8.66 
28.66 

::-;I 
62:87 
49.87 
31.52 
11.62 

70.7 
41.9 
30.3 
26.1 
25.6 
29.4 

-46.48 
-54.74 
-51.60 
-39.16 
-22.53 

-4.39 
14.00 
31.56 
46.48 
54.74 
51.60 
39.16 

-8.66 154.2 22.53 
-28.66 150.6 4.39 
-47.31 140.5 -14.00 
-61.62 115.1 -31.56 
-62.81 70.1 -46.48 

81.3 
61.3 
42.2 
23.9 

-1:::: 

158.8 
140.5 
121.5 
101.7 

81.3 

79.6 
51.6 
40.8 
28.3 
18.5 

9.9 

-18:: 
-154.4 
-178.9 

171.4 
162.8 

a= -60° 

-19.99 
-24.90 
-23.12 
-15.12 

-2.62 
12.70 
29.70 
41.67 
66.07 
83.33 
14.74 
56.40 

153.3 38.16 
141.3 20.63 
125.2 4.39 
103.9 -9.62 

79.6 -19.99 

36.05 5.6 1.71 
49.21 -14.8 18.18 
59.10 -41.7 29.37 
64.66 -19.1 39.96 
62.54 -121.6 48.10 
54.22 -153.5 51.34 

43.40 -176.4 48.31 -121.8 
32.26 164.9 40.30 -149.0 
22.00 147.7 29.77 -111.3 
13.52 130.5 18.57 169.3 

1.64 112.1 8.05 150.6 

cl= -900 

112.7 
94.4 
15.9 
57.9 
40.4 
23.3 

-114.1 
94.8 
14.8 
57.2 
43.5 
33.2 
25.5 
20.3 
19.1 
48.8 

156.8 
161.0 
157.3 
150.8 
141.8 
129.8 
114.1 

123.8 
97.6 
67.1 
47.6 
38.3 
35.0 
36.1 
42.2 
56.2 
82.4 

112.9 
132.4 
141.7 
145.0 
143.9 
137.8 
123.8 

-6.97 
-22.60 
-34.12 
-38.65 
-34.42 
-23.10 

-7.58 
10.16 
29.04 
48.45 
67.68 
81.34 
66.34 
49.14 
29.13 
10.82 
-6.97 

-20.51 
-40.84 
-59.09 
-68.65 
-59.65 
-41.54 
-21.25 23.0 

-.37 21.4 
20.51 22.9 
40.84 28.8 
59.09 45.1 
68.65 89.0 
59.65 133.9 
41.54 150.9 
21.25 157.0 

.37 158.6 
-20.51 157.1 

150.6 
131.5 
111.4 

90.4 
69.3 
49.2 
30.0 
11.4 
-8.0 

-30.1 
-57.1 
-89.4 

150.4 
135.9 
116.0 

90.5 
64.9 
44.7 
30.1 

% 
-l:o 

-17.4 
-87.5 

-161.7 
-178.6 

111.1 
161.5 
150.4 
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Circular Orbits 

Low-altitude circular orbits.- Consider first a circular orbit at an altitude of 
150 nautical miles having a period of 1.5 hours. The figures in appendix B show the var- 
iation of h’B and 8’B with time for the three chosen sites referred to orbital inclina- 
tions of -309 -60°, and -90°, respectively. (These results are from table I.) Overlay 1 
in the back envelope represents the 0’, movement of the spacecraft. The vehicle is 
considered to be initially oriented in its orbit arbitrarily at t = 0 over the earth refer- 
ence longitude of 8 = O”. Therefore, aline the overlay with Ps = O” of the overlay 
corresponding to 8’ = 0’ of the figure and with P, = 0’ of the first orbit (on the left 
side of the overlay) located at t = 0. It should be stressed that the initial orientation 
selected for the nominal prime site within the network must be used for all sites within 
a given recovery network. 

Each orbit, represented by the variation of Ps of 180° to -180°, is labeled on the 
upper and lower portion of each overlay. The intersection of a BVs curve with a 8’B 
curve for a given orbit represents the opportunity for return to the particular site for 
that orbit with the time of the opportunity being the time of the intersection. The lateral- 
range requirement for return at this opportunity is obtained by reading vertically from 
the intersection point to the X’B curve. The times and lateral-range requirements for 
every return opportunity for the nine cases considered are presented in table II. 

The information in table II defines the capability .for recall of a spacecraft with a 
given lateral-range capability to the recovery network being considered. The recall 
capability of a spacecraft is completely independent of the method used to obtain the given 
lateral-range capability. Thus, the requirements are equally applicable to spacecraft 
which achieve lateral range by either aerodynamic maneuvering, propulsion, or a combi- 
nation of the two. 

To illustrate the application of the results, consider a lifting-body vehicle with a 
maximum hypersonic lift-drag ratio of 1.25. A vehicle with a lift-drag ratio of 1.25 
should be capable of achieving a lateral range of 17O of earth surface arc. (See appen- 
dix B of ref. 9.) The recall capabilities of this lifting-body reentry vehicle are shown 
in table III where an X indicates the orbits in which the spacecraft can reach the par- 
ticular recovery site. 

From table III, it can be seen that having a recovery site at Edwards AFB, 
California, does not increase the opportunities of this lifting-body vehicle for return 
from an orbit inclined -3OO. For this orbit, this lifting-body entry vehicle would be 
capable of return to Homestead AFB and/or Hickam AFB for ten consecutive orbits 
and would not be capable of return for six consecutive orbits daily. For the -60° and 
-90° orbit inclinations, each of the three bases is necessary for maximum capability 
for recall to the recovery network. For the -60° orbit inclination, this lifting-body 
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entry vehicle would be capable of return for six consecutive orbits, incapable of return 
for four consecutive orbits, capable of return for the next five orbits, and incapable of 
return during the next orbit. Finally, for the -90’ orbit inclination, this lifting-body 
entry vehicle would be capable of return for five consecutive orbits, incapable of return 
for the next four consecutive orbits, capable of return for the next five consecutive 
‘orbits, and incapable of return for the next two orbits. 

TABLE IL- RETURN OPPORTUNITIES AND LATERAL-RANGE REQUIREMENTS 

Homestead AFB, 

t,, hours ~~.-- 1 -xv 

23.62 
1.21 
2.80 
4.38 
5.99 

7.58 
9.18 

10.80 
12.47 
14.10 

15.68 ____ 
17.26 
18.84 

%; 

23.60 
1.22 
2.80 

‘t:E 

7.42 38.6 
9.00 58.5 

10.61 79.0 
12.73 70.9 
____ ____ 

14.21 51.8 
15.78 31.9 
17.32 13.0 
18.84 -4.8 
20.41 -20.0 
22.00 -30.9 

23.62 
1.34 
2.91 
4.40 
5.94 

7.40 
8.82 

10.26 
11.62 
12.96 

14.40 
15.83 
17.37 
18.84 
20.42 
21.95 

a= -300 

-4.5 
-1.2 

1g.i 
26:5 

38.5 
48.8 
55.0 
53.4 
45.6 

34.6 
____ 
22.7 
11.8 

3.1 
-2.7 

23.53 
1.06 
2.66 
4.22 
5.83 

7.38 
8.98 

10.57 
12.18 
13.82 

15.58 
17.20 
___- 

18.78 
20.40 
21.95 

(Y= -600 

-34.2 23.50 
-28.1 1.09 
-15.7 2.68 

1.1 4.24 
19.0 5.80 

7.38 
8.92 

10.42 
11.95 
13.35 

:k% 
17:38 
18.83 
20.40 
21.98 

-64.2 
-51.5 
-32.9 
-12.6 

7.8 

27.5 
45.8 
60.0 
64.0 
55.0 

38.7 
20.0 

-28 2 
-40:7 
-57.0 

23.43 -42.0 
1.05 -53.2 
2.74 -53.0 
4.28 -41.5 
5.82 -23.9 

7.39 -5.5 
8.82 12.0 

10.36 30.0 
11.80 44.8 
13.20 54.0 

14.59 53.6 
15.98 44.3 
17.41 29.2 
18.88 11.2 
20.39 -6.2 
21.92 -24.9 

- 

I 

::i 
it 

16:s 

26.5 
38.0 
49.8 
60.0 
65.0 

59.8 
49.4 

____ 
37.5 
26.2 
16.5 

-17.4 
-24.1 
-24.2 
-16.9 

-4.2 

11.5 
28.9 
46.9 
65.1 
82.0 

79.9 
64.2 
46.0 
28.4 
10.8 
-5.0 

Hickam AFB Hawaii 

1 x’req, deg 

. .-__ 
23.35 

.90 
2.52 
4.08 
5.70 

7.23 
8.83 

10.42 
12.02 
13.63 

15.24 
16.95 
18.55 
20.19 
-___ 

21.78 

23.36 
.95 

2.50 
4.11 
5.72 

7.32 
8.85 

10.40 
11.97 
13.53 

15.06 
17.00 
18.73 
-___ 

20.29 
21.80 
.~ ___ 

-1.8 

1;:: 
30.0 
40.8 

49.2 
51.0 
46.2 
35.8 

____ 
23.9 

0.3 
-17.2 
-31.5 
-38.7 
-35.5 

-25.1 
-9.0 

2z.i 
4818 

68.2 
79.6 
58.7 

____ 
38.1 
19.0 

23.38 
.80 

2.40 

45::: 

7.40 -42.9 
8.89 -22.1 

10.40 -1.4 
11.95 20.0 
13.38 39.0 

14.80 57.1 
16.20 68.0 
17.50 64.5 
18.89 48.5 
20.40 29.6 
21.82 10.0 

It is often desirable to consider return to earth in terms of the time intervals 
between return opportunities rather than the orbit in which return can be accomplished, 
particularly from the viewpoint of the command pilot of the spacecraft. This informa- 
tion is of importance because, even though a vehicle may be capable of return in two 

15 



TABLE III.- RECALL OPPORTUNITIES FOR LIFTING-BODY VEHICLE 

Recovery site 
Orbit, n 

1 2 3 4 5 6 8 9 10 14 
--._~ 

7 1 1 / / Jl i ~1~ 1. 13 / 1 ~5 1 ‘6 

(Y= -300 

Homestead AFB, Fla. x x x 

Edwards AFB, Calif. x x x x 

Hickam AFB, Hawaii x x x 

consecutive orbits, the time interval between return opportunities may approach 27 if 
the first return opportunity occurs near the beginning of the orbit and the second oppor- 
tunity occurs near the end of the orbit. The technique utilized herein also gives the 
results in this form. (See table II.) These results are plotted in figure 3 for the lifting- 
body vehicle with L/D = 1.25. Analysis of figure 3 shows that this situation does not 
occur for return of a lifting-body spacecraft to the recovery network considered for orbit 
inclinations of -30°, -60°, and -90’. That is, the available return opportunities are about 
equally spaced with time intervals essentially equal to the period of the spacecraft. 

Hickam AFB 0000000 
Edwards AFB x x x x x 

HomesteadAFB + + + + 
22 0 2 4 6 8 10 12 14 16 18 20 22 24 2 Time, hr 

111213 141516 1718191101111121131141151161 Orbit," 

(a) a = -300. 

Hickam AFB o 0 0 
Edwards AFB I I I )I . 

Homestead AFB 2+ 4* + + 
22 0 6 8 10 12 14 16 18 20 22 24 2 Time, hr 

Ill2 I31 4 I 51 6 I7 I81 9 11011111211311411511610rbit, n 

(b) a = -600. 

Hickam AFB 
Edwards AFB ' 

0 0 
I I I I 

Homestead AFB 22 0 2 4* *6 8 10 12 14 16 i8 20 22 24 2 Time, hr 
I1 I2 I3 I4 I5 I6 I7 I8 I9 1101111121131141151161 Orbit, n 

(c) a = -900. 

Figure 3.- Time spacing of opportunities for return of lifting-body spacecraft 
to sample recovery network. 

The effects of the selection 
of the initial orientation of the 
spacecraft in orbit relative to the 
location of the recovery sites 
can be easily illustrated by an 
additional example. The results 
in table II were obtained by 
assuming that the spacecraft was 
initially oriented in its orbit at 
t = 0 over the earth reference 
longitude of 0 = Oo (note that 
Qfs = O” at t = 0). With this 
assumption, it was found that a 
lifting-body vehicle with 1’7O of 
earth-surface-arc lateral-range 
capability would be able to return 
to Homestead AFB, Florida, 
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TABLE IV.- RETURN OPPORTUNITIES AND LATERAL-RANGE 

REQUIREMENTS FOR RETURN TO HOMESTEAD AFB, FLA., 

WITH a’= -90° 

Orbit, n 

1 

2 

3 

4 

5 

6 
7 

8 
9 

10 

11 

12 

13 

14 

15 

16 
- 

T Homestead AFB. Fla. - 
t,.. hours x’req, de8 

0.50 -59.8 

2.11 -42.9 

3.64 -22.9 

5.17 -2.0 

6.60 11.0 

8.10 36.7 

9.60 53.8 

10.95 63.4 

12.06 61.1 

13.66 48.1 

15.15 29.8 

16.60 10.3 

18.11 -10.0 

19.62 -30.1 

21.15 -49.5 

22.80 -63.1 

during three orbits daily from a polar orbit. 
If the same vehicle in a polar orbit with a 
return site at Homestead AFB, Florida, and 
an initial orientation point of 8’, = 180° at 
t = 0 is considered, the times of return 
opportunities and the lateral range required at 
each opportunity are shown in table IV. The 
results in table IV indicate that this lifting- 
body vehicle would be capable of return to 
Homestead AFB, Florida, during four orbits 
daily from a -90° (polar) orbit with the proper 
selection of the initial orientation of the vehi- 
cle in its orbit. This example illustrates the 
importance of using an overlay representing 
the movement of the spacecraft in its orbit 
to determine the best initial orientation. 

High-altitude circular orbits. - The application of this technique of analysis to high- 
altitude circular orbits is as simple as the application to low-altitude circular orbits. 
To illustrate, consider a vehicle in a circular orbit at an altitude of 12 730 nautical miles 
with the resulting orbital period of 10 hours. It is desirable to determine the recall 
opportunities and the lateral-range requirements for each opportunity available prior to 
a repetition of the first opportunity. For the previous example in which T = 1.5 hours, 
this repetition occurred every 24 hours. That is, the return opportunities and lateral- 
range requirements were cyclic daily. For an orbit with a period of 10 hours, the return 
opportunities and lateral-range requirements will be cyclic every 5 days. During the 
cycle the vehicle will complete 12 orbits. The return opportunities and lateral-range 
requirements are determined for 
a full 5-day cycle for return to 
Homestead AFB, Florida, from a 
-600 orbit inclination from fig- 
ure B2(a) with overlay 2 and are 
shown in table V. The vehicle is 
considered to be initially oriented 
in its orbit at Ps = 180’ at 
t = 0. 

The problems inherent with 
large-period (high-altitude) orbits 
are apparent in the comparison of 
table V with the results given in 

TABLE V. - RETURN OPPORTUNITIES AND LATERAL-RANGE REQUIREMENTS 

FOR RETURN TO HOMESTEAD AFB, FLA., WITH a = -60°, ‘rs = 10 HOURS 

Orbit, n 

1 

2 

3 

4 

5 

6 

I 

8 

9 

10 

11 

11 

12 

Return opportunity T 
Day 

.- 
1 

--_ 

1 
--_ 

2 

3 
--- 

4 
--_ 

4 

5 

5 

5 

t,, hours 

4.16 
____ 

21.85 
____ 

16.44 

6.54 
---- 

1.36 
____ 

18.95 

9.03 

11.75 

14.07 

~‘,,c,, dw 

-1.5 
____ 

-30.4 
____ 

23.0 

26.8 
____ 

-27.5 
___- 

-5.9 

59.0 

83.4 

54.0 
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table II for return to Homestead AFB, Florida. In table II (for a! = -600), return oppor- 
tunities occurred for 15 of the 16 vehicle orbits, and the lifting-body vehicle with a 
lateral-range capability of 17’ of earth surface arc was found to be capable of return to 
Homestead AFB, Florida, during four of these 15 opportunities. In table V with 
7s = 10 hours, return opportunities occur for only eight of the 12 orbits (however, since 
two opportunities occur during the eleventh orbit, a total of nine opportunities results); 
a vehicle with a lateral-range capability of 17O of earth surface arc would be capable of 
return to Homestead AFB, Florida, during two of these 12 orbits or twice in 5 days. 

Elliptical Orbits 

The application of the present analysis technique to elliptical orbits is no more 
difficult than to circular orbits once the extra-atmospheric motion of the spacecraft 
has been defined. (See appendix A.) Consider figure Bl for the three chosen sites 
and an orbital inclination of -30’. The motion of the spacecraft in its orbit is given 
on overlay 3 as obtained from figure A2. It should be emphasized that for elliptical 
orbits the total variation in injection conditions requires that the overlay be moved 
vertically as well as horizontally to allow for longitudinal variations in the location of 
the perigee of the initial elliptical orbit. Thus, the overlay must cover 540° instead 
of the 360’ used for circular orbits. 

As before, the intersection of a Ps curve with a PB curve for a given orbit 
represents the return opportunity at the time indicated by the intersection point. As an 
example, take the initial entry point as perigee deorbit with t = 0 and 8’, = O”. The 
times and lateral-range requirements for every return opportunity are shown in table VI. 

For a vehicle with a given lateral-range capability, the return opportunities are easily 
obtained from this table. 

TABLE VL- RETURN OPPORTUNITIES AND LATERAL-RANGE REQUIREMENTS 

FOR RETURN FROM AN ELLIPTICAL ORBIT, Q = -30°, 7s = 2 HOURS 

Orbit, n 

1 
2 

3 
4 
5 

6 
I 

a 
9 

10 
11 
12 

Homestead AFB, Fla. 

tr, hours X’req, deg 

23.70 -4.5 
1.74 .4 

3.90 11.7 
6.00 26.6 
8.13 42.4 

10.26 53.8 

12.56 53.3 

15.15 38.0 
_--- --- 

17.31 21.9 

19.50 7.1 
21.60 -1.7 

Edwards AFB, Calif. T Hickam AFB, Hawaii 

tr, hours X’req, deg 

23.56 9.0 

1.60 5.0 

3.13 1.0 
5.84 17.0 
1.94 30.6 

1p.04 45.8 

12.20 60.1 

14.40 64.5 

17.13 50.0 
---_ 

19.35 

21.50 L 

_-- 

33.5 

19.0 

tr, hours 

23.40 

1.53 
3.60 
5.74 
7.80 

9.94 
12.05 

14.17 
16.36 

18.80 
21.20 
---- 

X’req, deg 

12.1 

-. 7 i -7.0 
-7.1 

.6 
14.3 

29.9 

44.2 
51.4 

44.6 

28.3 
_-- 
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For instance, again consider a lifting-body class of vehicle having a lateral-range 
capability of 170 of earth surface arc. The opportunities for return of this vehicle to the 
three bases considered are presented in table VII. 

TABLE VII.- RECALL OPPORTUNITIES FROM AN ELLIPTICAL ORBIT 

FOR LIFTING-BODY ENTRY VEHICLE, o! = -30°, 7s = 2 HOURS 

I Orbit, n 
Recovery site 

112131415/6,7,6,9,& 

Homestead AFB, Fla. X X X 

Edwards AFB, Caltf. x x x x 

Hickam AFB, Hawaii x x x x x x 

X X 

As was the case for the circular orbit, the inclusion of Edwards AFB, California, 
as a recall site does not increase the recall capability of the spacecraft. Homestead 
AFB, Florida, and Hickam AFB, Hawaii, allow return on eight consecutive orbits with 
no return opportunity during four consecutive orbits. The associated time intervals 
between return opportunities may be easily obtained from table VI. 

It should be emphasized that both the initial spacecraft location and longitudinal 
perigee location of the elliptical orbit are critical to the recovery problem for return 
from elliptical orbits. The use of an overlay, which permits these parameters to be 
changed at will, allows the definition of the recall capability of a spacecraft with one 
figure representing the motion of the spacecraft in its orbit rather than the large number 
required to consider a variety of initial points and perigee locations. 

CONCLUDING REMARKS 

An analysis technique has been developed which makes possible the rapid and accu- 
rate solution of several phases of the problem of return from orbit - the opportunities 
for recall of entry vehicles to multiple landing sites, the lateral-range requirements 
associated with any recall-capability constraint for return to any given number of recov- 
ery sites, and the determination of a network with a minimum number of recovery sites 
for any set of orbital or entry-vehicle constraints. This technique may be applied to 
either circular or elliptical orbits with any period and inclination for return to any point 
or points on earth. 

Of the three solution methods presented, the computer-graphical solution appears 
to be the most desirable in terms of economy and speed. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., November 17, 1966, 
789-30-01-02-23. 
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APPENDIX A 

DEFINITION OF SPACECRAFT MOTION FROM ORBIT TO ENTRY 

Circular Orbit 

The trajectory from a circular orbit to the atmosphere is, of course, independent 
of the location of the spacecraft in its orbit for a nominal, Hohmann type of descent. For 
the present analysis, the Hohmann type of descent is considered and no variation in the 
extra-atmospheric longitudinal range is allowed. The relation between time and the 
location of the entry vehicle in its orbit is therefore a linear variation and may be written 
as’ 

Ps = PO - 360 t 
7S 

where -180’ 6 0’s 2 180’ and 8’, defines the initial longitudinal location of the vehi- 
cle at the injection time, t = 0. 

Elliptical Orbit 

The trajectory of the entry vehicle from the deorbit point to the entry point must 
be defined for the consideration of recovery from elliptical orbits since the time from 
deorbit to entry for the nominal descent will vary with the initial position of the entry 
vehicle in its orbit. 

Two factors must be considered - the position of the spacecraft in its orbit and 
the AV capability of the spacecraft to initiate the descent trajectory. For descent 
from orbits with a small eccentricity, the deorbit AV requirement for a Hohmann 
type of transfer will generally be well within the capabilities of the spacecraft retro- 
propulsion system. However, this AV requirement rapidly increases with increasing 
eccentricity and may require more than 50 percent of the vehicle mass to be allocated 
to the retropropulsion system for only moderate eccentricities. The choice of a 180’ 
Hohmann type transfer (apogee at deorbit and perigee at entry for the descent trajectory) 
between the deorbit point and the ballistic perigee of the descent trajectory is arbitrary 
but was selected since this is the nominal descent trajectory for return from a circular 
orbit. The method used in the present analysis is to select, for typical retropropulsion- 
system parameters, a maximum retropropulsion AV capability which must be equal to 
or greater than that required to insure a Hohmann type of descent from perigee. For 
those portions of the orbit for which a 180° transfer is not possible, the descent trajec- 
tory necessary to reach the desired ballistic perigee is followed. 
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APPENDM A 

The longitudinal angles and times associated with descent from the two orbital 
regions may be defined with the aid of figure Al, and the general Keplerian equations of 
reference 11. If the AV required to initiate a Hohmann type of descent is less than 
the allowable AV, the following procedure is used: 

AY = Ye since rd = 0 for a 180’ transfer 

Fe is described by the initial orbit 

and 

vd is obtained from the vis-viva integral 

where ad = ra,d + ‘p,d 
2 ’ 

ra,d=re, and r P, d is specified by the available entry 

corridor. The velocity decrement Ai? may be obtained from the following equation: 

AT2 = ve2 +vd2 -- 
- 2vevd COS A7 WI 

Figure Al.- Schematic drawing of descent from an elliptical orbit. 
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APPENDIX A 

and the time elapsed from deorbit to entry, from the following equation: 

The total time elapsed, measured from the apogee of the initial orbit, is 

ts = te + td 

where 

(A3) 

(A4) 

(A5) 

The location of the entry point with respect to the apogee of the initial orbit is 

et, = efe - 180’ (A6) 

If the AV required to initiate a Hohmann type. of descent is greater than the allow- 
able AV, the following procedure is used: Values of Ay less than ye are selected 
and values of TTd, ad, rd, and rp,d are computed from 

& = i;ie COS Ay - 

r0 

ad= 2r, - 2 
- - vd 
‘d 

(A’71 

(A81 

yd = Ye - AY (A9) 

and 

rp,d = a d[-/G) (AW 

The values of rp,d thus obtained are plotted against Ay and the desired value of AY 
is obtained for the specified value of rp d (obtained from entry-corridor considera- 
tions). Either an iterative or graphical )solution for Ay is required because of the 
cpmplexity of a direct solution involving rP,d. The correct values of vd and ad, as 
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well as the other pertinent parameters of the descent trajectory, may then be calculated 
from the following equations: 

r 2V 2cos2yd 
pd= d d 

r0 

bd= /G 
I 

(All) 

pd-1 
cos efd = rd 

ed a 

Obviously, two values of eTs are obtained: One as the spacecraft is moving from 
apogee to perigee, the other as the spacecraft is moving from perigee to apogee. The 
time from deorbit to entry is obtained from the following equation: 

td = 
e sin 8’ 

- 1 .de, cos (A121 

and the total time elapsed from the reference point (apogee) is 

t, = t, + td (A13) 

where te is obtained from equation (A5). 

The location of the entry point with respect to the apogee of the initial orbit is 

e’, = ele - e’d (A14) 

As an example of the analysis, consider an elliptical orbit with a a-hour period. 
The orbit parameters are: 

ra,e = 5165 nautical miles 

rp,e = 3600 nautical miles 

ee = 0.1793 
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Figure A2 summarizes the results obtained for return from this orbit. First, the 
Av requirements for a Hohmann type of transfer from the elliptical orbit to the atmos- 
phere were determined (dashed curve in fig. A2(a)). The maximum value of AT 
obtained, 0.1693, would require that more than 40 percent of the spacecraft weight be 
allocated to the retropropulsion system for typical engine parameters (I = 300 set, 
(T = 0.1). For this example, a maximum allowable value of AT of 0.092 was selected. 
This value of AV requires that 24 percent of the total weight be allocated to the retro- 
propulsion system. Note that 180’ descent trajectories are possible only at perigee and 
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(a) Velocity increment. 

(b) Longitudinal range angle for descent. 
Figure A2.- Descent trajectory parameters for return from an elliptical orbit. ra e = 5165 n. mi.; 

rP,e = 3600 n. mi.; e, = 0.1793. 
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td’ hr 

.5l I I I I I I I I I I I I I I I I I I 
180 140 100 60 20 -20 -60 -100 -140 -180 

ok, deg 

(c) Time from deorbit to entry. 
Figure A2.- Concluded. 

for values of ete between +34O and -34O. The values of 8’d required are shown in 
figure A2(b) with the larger values required when the spacecraft is moving from perigee 
to apogee. The associated descent times td are shown in figure A2(c). 

The total angles traveled and times (referred to entry at zero time for deorbit at 
perigee) are presented in figure A3. As might be anticipated, the time required for the 

tS, hr 

Figure A3.- Spacecraft motion for return from an elliptical orbit. 
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AV limited descents are greater than the 180’ descent times for the spacecraft motion 
from perigee to apogee and less than the 180’ descent times for the spacecraft motion 
from apogee to perigee. 
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EXAMPLE PLOTS FOR COMPUTER-GRAPHICAL TECHNIQUE 

Overlays 1 to 3, provided in the envelope in the back cover of this report, depict 
the motion of spacecraft on circular orbits with periods of 1.5 and 10 hours and on an 
elliptical orbit with a period of 2 hours. Return opportunities and lateral-range require- 
ments may be defined for any vehicle for recall to any of the sites considered by placing 
the appropriate orbital overlay over any of figures Bl to B3. For circular orbits, any 
desired location of the spacecraft at zero time is obtained by moving the overlay hori- 
zontally. The return opportunities can then be defined as illustrated in figure 2. The 
intersection of et, and 8’B locates the time of the return opportunity during a given 
orbit. Reading vertically to the X’B curve yields the lateral-range capability required 
to reach the recovery site. 

For elliptical orbits, the desired location of the spacecraft at zero time is obtained 
by moving the overlay both horizontally and vertically. The ordinate scale of the ellipti- 
cal overlay indicates that the intersection of the orbital and equatorial planes (0’ = 0) lies 
along the semimajor axis of the ellipse. If, however, the intersection of the orbital and 
equatorial planes does not occur at this point, the overlay must be shifted vertically to 
orient the overlay correctly (i.e., if @Is = 0’ at the semiminor axis, the overlay must 
be shifted by 900). Shifting the overlay horizontally then gives the desired value of Bts 
at t=O. 

Once the overlay has been properly oriented, return opportunities for elliptical 
orbits are obtained in the same manner as those for circular orbits. 
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(a) Recovery site at Homestead AFB, Florida. (a) Recovery site at Homestead AFB, Florida. 

Figure BL- Return from an orbit inclined -3OO. Figure BL- Return from an orbit inclined -3OO. 
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(b) Recovery site at Edwards AFB, California. 

Figure Bl.- Continued. 
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Figure Bl.- Concluded. 
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(a) Recovery site at Homestead AFB, Florida. 

Figure BZ- Return from an orbit inclined -6tj”. 
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Figure BZ.- Continued. 
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Figure B2.- Concluded. 
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(a) Recovery site at Homestead AFB, Florida. 

Figure B3.- Return from an orbit inclined -90° (polar). 
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Figure 83.7 Continued. 
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Figure B3.- Concluded. 
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